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ABSTRACT Onsager’s phenomenological equations successfully describe irreversible thermodynamic processes. They
assume a symmetric coupling matrix between thermodynamic fluxes and forces. It is easily shown that the antisymmetric part
of a coupling matrix does not contribute to dissipation. Therefore, entropy production is exclusively governed by the sym-
metric matrix even in the presence of antisymmetric terms. In this work we focus on the antisymmetric contributions which
describe isentropic oscillations and well-defined equations of motion. The formalism contains variables that are equivalent
to momenta, and coefficients that are analogous to an inertial mass. We apply this formalism to simple problems such as an
oscillating piston and the oscillation in an electrical LC-circuit. We show that isentropic oscillations are possible even close
to equilibrium in the linear limit and one does not require far-from equilibrium situations. One can extend this formalism to
other pairs of variables, including chemical systems with oscillations. In isentropic thermodynamic systems all extensive and
intensive variables including temperature can display oscillations reminiscent of adiabatic waves.
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1 Introduction
Oscillatory systems in classical physics are non-dissipative
adiabatic processes. Let us consider a mass m coupled to two
identical springs with an adiabatic compression modulus, K
(Fig. 1A). After a dislocation of the mass away from the equi-
librium position one finds positional oscillations of the mass.
As a consequence of dissipation, the mass will approach the
resting position x0 (Fig. 1), which is at the minimum of the
mechanical potential, V . One finds an analogous problem if
one replaces the springs by two identical pistons containing
an adiabatically shielded ideal gas (Fig. 1B). The two gas vol-
umes are thermodynamic ensembles, and the resting position
of the system is given by the maximum entropy of the total
gas. Thus, the minimum of the potential, V , and the maxi-
mum of the entropy, S, are analogous. For the monoatomic
ideal gas T · V 2/3 =const. and T 5/3 · p−2/3 =const., respec-
tively. This allows for a calculation of the spring modulus
K. During an oscillation in volume, the gas containers con-
sequently also display oscillations in temperature, pressure
and internal energy. Since the only difference of the two sys-
tems in panels A and B is the material of the springs, it is
obvious that the temperature of the two springs in panel A
will also oscillate, while the resting position is defined by
the maximum entropy of the springs. It is in fact the na-
ture of isentropic oscillations that temperature and internal
energy (and all other intensive and extensive variables rele-
vant for the equation of states) of subsystems will oscillate. A
non-mechanical example is a capacitor coupled to a solenoid
coil (Fig. 1C), which displays oscillations in the electrostatic
field, the charges on the capacitor plates, and of the electri-
cal current (and the magnetic field, respectively) - but also of
the temperature of the dielectric between the capacitor plates.
The latter phenomenon is called the ‘electrocaloric effect’. It
is usually small but can assume large values close to phase
transitions of the dielectric (1–3). It is due to the reduc-
tion of entropy in the dielectric upon increase of an electrical
field. The corresponding phenomena in mechanics is called
the mechanocaloric effect.

Figure 1: (A) Two springs with spring constant K at-
tached to a mass m. (B) Two reservoirs 1 and 2 con-
taining an ideal gas, which are coupled by a piston with
massm. (C) Oscillations of charge differences, ∆q, and
current, I , in a capacitance-inductor (LC) circuit.

A seemingly different class of oscillations has been found
in some chemical reaction schemes such as the Belousov-
Zhabotinsky (BZ) bromate reaction, the Briggs-Rauscher io-
dine clock or yeast populations under stress conditions. The
BZ-reaction is a chemical clock containing HBrO2, Br−,
Ce3+/Ce4+, or O2 as intermediates which oscillate in time
(4–6). Such reactions are thought to originate from far-from-
equilibrium processes (7). Typically, one describes them as
set of coupled non-linear rate equations containing autocat-
alytic intermediate products as free variables. They are exem-
plified by well-known reaction schemes such as the Brussela-
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tor (7, 8) or the Oregonator (9). What such reaction schemes
have in common is that temperature, pressure, the electrical
potential and other thermodynamic variables that are not di-
rectly related to the concentrations, are not considered.
Interestingly, it is known that in some chemical systems such
as the BZ-reaction the temperature oscillates in phase with
the concentrations of the intermediates (Fig. 2 (A-C), (4, 10–
12)). This is reminiscent of adiabatic oscillations such as the
coupled pistons in Fig. 1. Similar oscillations in tempera-
ture or heat production rate have been reported in the Briggs-
Rauscher reaction (13). There are also biological systems
with similar responses, e.g. yeast cells (14) or the action po-
tential in nerves (Fig.2 (D), (15, 16)), which may occur in
periodic pulse trains. In the past, we have argued that the re-
versible changes in temperature found in nerves (Fig. 2 D)
indicates that the nerve pulse is an adiabatic pulse reminis-
cent of sound rather than a dissipative wave (17, 18). The
BZ-reaction shares similarities with the temperature response
of nerves, i.e., it shares features of adiabatic processes.

Figure 2: Temperature oscillations as a function
of time in the Belousov-Zhabotinsky reaction and in
nerves. (A) Adapted from (12) yielding up to 0.08 K
in temperature variations. (B) Adapted from (4) and
(C) Adapted from (10). (D) Heat transfer from a nerve
into its environment, which is proportional to temper-
ature changes, and the square of the voltage change V
across the nerve membrane. Adapted from (16).

Linear nonequilibrium thermodynamics is applied to de-
scribe irreversible processes such as diffusion of particles and
heat (e.g., (8, 19, 20)). The entropy is modeled as a harmonic
potential (21). Far-from-equilbrium processes are thought
being related to non-harmonic entropy potentials that could

possess more than one entropy maximum with oscillations
between them. In this article we explore the possibility that
chemical oscillations and mechanical oscillations are both re-
lated to adiabatic processes, and that they can be described
with the methods of linear non-equilibrium thermodynamics.

2 Theory
Making use of dQ = TdS, the first law of thermodynamics
can be expressed as:

dS =

(
1

T

)
dE +

( p
T

)
dV −

(
Ψ

T

)
dq...−

∑
i

(µi
T

)
dni ,

(1)
where dE, dV , dq, and dni are changes in extensive vari-
ables, while gradients of 1/T , p/T , −Ψ/T and −µi/T (or
differences of these quantities between two reservoirs) are re-
lated to thermodynamic forces. Einstein proposed to treat the
entropy as potential (21). In harmonic approximation, the en-
tropy can be expanded around the equilibrium state as

S = S0+
1

2

∑
ij

(
∂2S

∂ξi∂ξj

)
0︸ ︷︷ ︸

−gij

ξiξj+ ... ≈ S0−
1

2

∑
ij

gijξiξj ,

(2)
where the gij are the coefficients of a positive definite matrix
with gij = gji and det(g) > 0 (all eigenvalues are positive).
The variables are given by ξi = (αi−α0,i), where αi is an ex-
tensive quantity (e.g., internal energy, volume, the number of
particles of a particular species, charge, etc.), and αi,0 is the
value of this variable in equilibrium. The consideration of the
entropy as a potential led to the development of fluctuation-
dissipation theorems pioneered by Greene and Callen (22, 23)
and Kubo (24).

If a thermodynamic system is out of equilibrium, the sys-
tem will relax back to more likely states and the entropy in-
creases. Entropy production by a closed system evolving
from a nonequilibrium state can be described by

dS

dt
≡ σ =

∑
i

∂S

∂ξi︸︷︷︸
≡Xi

∂ξi
∂t︸︷︷︸
≡Ji

≡
∑
ij

XiJi , (3)

where the Xi = ∂S/∂ξi are the thermodynamic forces and
the Ji = ∂ξi/∂t are the conjugated thermodynamic fluxes of
the variables ξi.

Onsager (19, 20) expanded the fluxes as linear combina-
tions of the forces, in analogy to Stokes law where the veloc-
ity of a body pulled in a viscous fluid is proportional to the
drag force. According to Onsager, a thermodynamic system
can then be described by a set of linear equations

J1 = LS11X1 + LS12X2 + ...

J2 = LS21X1 + LS22X2 + ... (4)
J3 = ...

or J = LSX , where LS is a symmetric matrix. Eqs. (4)
are called the ‘phenomenological equations’. The formalism
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Figure 3: Schematic representation of dissipation, isentropic oscillations and real processes with both oscillations and
dissipation in a harmonic entropy potential with two variables, ξ1 and ξ2.

is a natural extension of equilibrium thermodynamics. Tak-
ing into account Onsager’s phenomenological equations, the
entropy production of a nonequilibrium system in the linear
limit is given by

dS

dt
=
∑
ij

LSijXiXj =
∑
ijkl

LSijgjkgilξkξl , (5)

where in Xi = −
∑
j gijξj and Ji =

∑
LSijXj =

−
∑
jk L

S
ijgjkξk.

2.1 Dissipation
Onsager’s decision not to consider the antisymmetric terms
is based on the assumption that in a small sub-volume of
a system thermal fluctuations do not display a preferred di-
rection in time, i.e., that detailed balance is obeyed (20) and
that fluctuations are Markovian. (There exist generalizations
of Onsager’s equations that include memory effects (25).)
Onsager then assumed that a fluctuation and a macroscopic
perturbation possess similar time evolutions. This is plausi-
ble for over-damped systems where inertial forces are small
compared to the forces created by thermal fluctuations, and
motion is dominated by random thermal collisions. How-
ever, one can imagine nonequilibrium states of thermody-
namic systems prepared such that they display a preferred
direction in time. The example in Fig. 1b is of this nature.
In such systems, inertia is not generally small and Onsager’s
argument is not valid.

Any quadratic matrix L can be written as a sum of a sym-
metric and an antisymmetric part, L = LS + LA, with

LSij =
Lij + Lji

2
and LAij =

Lij − Lji
2

. (6)

The matrix LA describes isentropic processes because it can
easily be seen that ∑

ij

LAijXiXj = 0 . (7)

It is therefore a natural consequence which does not require
any further justification that only the symmetric matrix LS

contributes to dissipation (shown in Fig. 3, left). Entropy pro-
duction can more generally be written as dS/dt =∑
ij LijXiXj without making particular reference to the sym-

metry of the matrix L. As we will show, it is not generally
justified to omit the antisymmetric terms. The terms associ-
ated to the antisymmetric matrix describe processes that con-
serve entropy (i.e., oscillations, shown in Fig. 3, center) while
the combination of the two leads to damped oscillations as
schematically described by Fig. 3 (right).

2.2 Oscillations
In the following we explore the implications of taking into ac-
count the antisymmetric terms only. We will consider simple
oscillations in a harmonic entropy potential.

We assume systems with two variables, ξ1 and ξ2, with as-
sociated fluxes, J1 and J2, and two conjugated forces,X1 and
X2. There is only one coefficient, LA12, and the phenomeno-
logical equations read

dξ1
dt
≡ J1 = LA12X2 = −LA12(g21ξ1 + g22ξ2)

dξ2
dt
≡ J2 = −LA12X1 = +LA12(g11ξ1 + g12ξ2) . (8)

LA12 may be positive or negative. The time derivatives of eq.
(8) lead to

d2ξ1
dt2

= −LA12
(
g12

dξ1
dt

+ g22
dξ2
dt

)
eq.8
= −

(
LA12
)2

det(g)ξ1

d2ξ2
dt2

= +LA12

(
g11

dξ1
dt

+ g12
dξ2
dt

)
eq.8
= −

(
LA12
)2

det(g)ξ2 ,

(9)
which displays periodic solutions with ξ1 = ξ1,0cos(ωt+φ1)
and ξ2 = ξ2,0cos(ωt + φ2) with a frequency, ω, given by
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ω2 =
(
LA12
)2

det(g). Thus, the antisymmetric part of the
coupling matrix leads to oscillations.

The forces are linear functions of the fluxes of the ex-
tensive variables. Since the extensive variables oscillate, the
conjugated thermodynamic forces also oscillate. This implies
that in the isentropic case one also expects oscillations of the
intensive variables such as temperature, pressure, electrical
field and chemical potential.

2.3 Equations of motion for the isentropic case
The entropy is given by

S = S0 −
1

2
g11ξ

2
1 − g12ξ1ξ2 −

1

2
g22ξ

2
2 = const. (10)

By using eq. (8) we obtain for the two forces X1 and X2

∂S

∂ξ1
= −g11ξ1 − g12ξ2

eq.(8)
= − 1

LA12

·
ξ2

∂S

∂ξ2
= −g12ξ1 − g22ξ2

eq.(8)
= +

1

LA12

·
ξ1 . (11)

We will call eqs. (11) the thermodynamic equations of mo-
tion.

For an arbitrary even number of variables, we find that

ξ̈ = −LA · g · ξ̇ =
(
LA · g

)2
· ξ (12)

with oscillatory solutions. The thermodynamic equations of
motion are given by

X =
∂S

∂ξ
=
(
LA
)−1

ξ̇ . (13)

Simplification: For simplicity we assume in the follow-
ing that g is a diagonal matrix meaning that the principal axes
of the entropy potential align with the variables under consid-
eration. In the case of two forces and fluxes, eq. (8) yields

ξ2 = − 1

LA12g22

dξ1
dt

. (14)

Therefore, the second variable is proportional to the tempo-
ral variation of the first variable, i.e., it is reminiscent of a
momentum. Eq. (9) becomes

d2ξ1
dt2

= −
(
LA12
)2

(g11g22)ξ1 (15)

with oscillations of frequency ω2 =
(
LA12
)2

(g11g22). The
thermodynamic equations of motion (eq. (11)) are given by

∂S

∂ξ1
= −g11ξ1 = − 1

LA12
ξ̇2

∂S

∂ξ2
= −g22ξ2 = +

1

LA12
ξ̇1 . (16)

Eqs. (11), (12) and (16) display a formal similarity to
Hamilton’s equations of motion, which for one spacial vari-
able x with an associated momentum p are given by

∂H
∂x

= −
·
p and

∂H
∂p

= +
·
x , (17)

whereH is the Hamiltonian.

3 Examples
3.1 Oscillating piston (or spring)
Let us consider two coupled pistons with an associated mass,
m, as given in Fig.1 (B). We assume that the position of the
mass in equilibrium is given by x0 and the deviation from
equilibrium is ∆x. Further, we assume that the pistons pos-
sess an adiabatic compression modulus K that can be calcu-
lated from the adiabatic equations of state of an ideal gas.
(Two metal springs are conceptually equivalent but would
possess different equations of state.)

The analytical mechanics description of this problem is

H =
1

2
K∆x2 +

1

2m
p2 = const. , (18)

where p = m∆ẋ is the momentum, andK is the compression
modulus of the spring. Hamilton’s equations of motion lead
to

∂H
∂x

= K∆x = −m∆ẍ (19)

∂H
∂p

=
p

m
= ∆ẋ . (20)

Eq. (19) is Newton’s second law, while eq. (20) is the defini-
tion of the momentum. Eq. (19) leads to an oscillation with
ω2 = K/m.

The thermodynamic treatment leads to an equivalent de-
scription, as will be shown below. Let us assume that there
are two variables, ξ1 ≡ ∆x and ξ2, and that gij is a diagonal
matrix.

From eq. (14) it follows that

ξ2 = − 1

LA12g22

d∆x

dt
. (21)

Entropy conservation leads to

∆S = −1

2
g11∆x2 − 1

2g22(LA12)2

(
d∆x

dt

)2

= const. (22)

At the present stage, the thermodynamic formalism does not
know anything about the existence of a piston/spring or an
inertial mass. The constants in its formalism acquire a mean-
ing by comparison with a known physical situation. In the
case of an oscillating spring, we find by comparison with eq.
(18) that 1/g22(LA12)2 ≡ m corresponds to the mass attached
to the piston and g11 ≡ K corresponds to the compression
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modulus (spring constant) of the setup in Fig. 1 (A).
Eq. (15) yields

d2(∆x)

dt2
= −

(
LA12
)2

(g11g22) ∆x . (23)

Thus, the oscillatory frequency is given by

ω2 = g11g22
(
LA12
)2 ≡ K

m
. (24)

The thermodynamic equations of motion as given in eqs. (16)
yield

∂S

∂ξ1
= −g11∆x = +

1

(LA12)2g22

d2∆x

dt2
and

∂S

∂ξ2
= −g22ξ2 = +

1

LA12

d∆x

dt
. (25)

It follows that

− g11∆x =
1(

LA12
)2
g22

∆ẍ or

−K∆x = m∆ẍ . (26)

This is the thermodynamic analogy to Newton’s second law.
The thermodynamic formalism is absolutely equivalent to

the analytical mechanical description of the same problem as
given in eq. (17). This may not be surprising since the mathe-
matics in both cases is based on the assumption of a harmonic
potential. However, the terms acquire a different meaning be-
cause in contrast to the mechanical potential the entropy po-
tential is rooted in statistics.

3.2 LC circuit
The derivations in the previous paragraph are independent of
the choice of the extensive thermodynamic variable. Let us
now consider an electrical LC-circuit with a capacitor of ca-
pacitance Cm and a solenoid coil with the inductance L, as
shown in Fig.1 (C).

Let us again consider two variables, ξ1 and ξ2. The first
variable ξ1 ≡ ∆q shall be defined by the difference of the
charge on the two capacitor plates in an LC-cirquit, with the
conjugated force −Ψel/T containing the electrostatic poten-
tial Ψel and the temperature T . The second variable ξ2 is
given by

ξ2 = − 1

LA12g22

d∆q

dt
= +

1

LA12g22
I , (27)

where I = −d∆q/dt is an electrical current (the negative
sign originates from the fact that the charges flow out of the
capacitor).

The entropy is conserved

∆S = −1

2
g11∆q2 − 1

2g22(LA12)2
I2 = const. (28)

The analogous equation in electromagnetism is

E =
1

2

∆q2

Cm
+

1

2
LI2 = const. , (29)

where Cm is the capacitance and L is the inductance of the
coil. By comparison, we find that Cm ≡ 1/g11 and L ≡
1/g22(LA12)2. The first term in eq. (29) is the electric energy,
while the second term is the magnetic energy. They corre-
spond to the potential and the kinetic energy in the previous
problem.

Eq. (15) yields

d2(∆q)

dt2
= −

(
LA12
)2

(g11g22) ∆q (30)

with oscillatory solutions with

ω2 =
(
LA12
)2
g11g22 =

1

LC
. (31)

The thermodynamic equations of motion as given in eqs.
(11) yield

∂S

∂ξ1
= +

1

(LA12)2g22

d2∆q

dt2
and

∂S

∂ξ2
= +

1

LA12
∆q̇ . (32)

From eqs. (16) and (32), it follows that

− g11∆q =
1(

LA12
)2
g22

∆q̈ or

1

Cm
∆q = Lİ . (33)

This equation could also be derived from Kirchhoff’s loop
rule. Eq. (33) is the electrical analogy to Newton’s second
law. Lİ = −Lq̈ is the equivalent of an inertial force, an L
plays the role of a mass. Thus, the thermodynamic formalism
is equivalent to the electrical description of the same problem.

3.3 Oscillating reactions
The previous section suggests that there exist equivalents of
inertia also in systems that are not of mechanical nature. In
the electromagnetic case, the inductance plays the role of an
inertial mass. Eq. (1) suggests that any pair of an extensive
variable and its conjugated intensive variable play a compara-
ble role. It seems plausible to suggest that one obtains mean-
ingful thermodynamic relations for any pair of variables.

In chemistry, the extensive variables of interest are the
number of particles in a chemical reaction, ni, or the reaction
variable of a reaction, ζ. Let us consider a chemical reaction

νX1X1 + νX2X2 + ...
ζ↔ νY1Y1 + νY2Y2 + ... , (34)

where the Xi and Yi are chemical reagents, and the νi are
the reaction stoichiometries. We assume that our first vari-
able ξ1 = ζ is the reaction variable with the conjugated force
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A/T . Here, A = − (
∑
νYiµYi −

∑
νXiµXi) is the affinity

of the above reaction, where the µi are the chemical potentials
of the reagents. The second variable ξ2 is given by

ξ2 = − 1

LA12g22

dζ

dt
, (35)

where (dζ/dt) is the flux in the chemical reaction.
The entropy is conserved

∆S = −1

2
g11ζ

2 − 1

2g22(LA12)2

(
dζ

dt

)2

= const. , (36)

where Lc ≡ 1/g22(LA12)2 is a chemical inductance.
Eq. (15) yields

d2(ζ)

dt2
= −

(
LA12
)2

(g11g22) ζ (37)

with oscillatory solutions with frequency

ω2 =
(
LA12
)2
g11g22 ≡

g11
Lc

. (38)

The thermodynamic equations of motion yield

∂S

∂ξ1
= +

1

(LA12)2g22
ζ̈ and

∂S

∂ξ2
= +

1

LA12
ζ̇ . (39)

From eqs. (16) and (39), it follows that

− g11ζ = Lcζ̈ , (40)

which is the chemical equivalent of Newton’s second law.
In analogy to the arguments above, not only the chemical

potentials will oscillate but also the temperature. The latter
effect could be called a chemocaloric effect. Such a behavior
was found in various chemical oscillations, most notably in
the Belousov-Zhabotinski reaction as discussed in the intro-
duction.

4 Discussion and conclusions
We have shown here that by a generalization of the meth-
ods of linear non-equilibrium thermodynamics one can un-
derstand some simple oscillatory processes in the language of
thermodynamics. While our considerations are very straight-
forward and simple, they have (to our knowledge) not been
made previously.
Phenomenological Onsager-type equations yield fluxes that
can be written as J = LX , where L is an arbitrary matrix
that can be uniquely separated into a symmetric and an anti-
symmetric matrix, LS and LA, respectively. The symmetric
part leads to dissipation described by the standard methods of
nonequilibrium thermodynamics (8) while the the antisym-
metric part contains oscillatory processes that conserve en-
tropy. Onsager’s decision to focus on a symmetric coupling

matrix (20) is justified in systems where motion is dominated
by random thermal collisions, and inertia can be neglected.
However, the example of a piston containing an ideal gas con-
nected to a mass (Fig. 1) demonstrates that one can construct
thermodynamic systems where these assumptions do not hold
true.

In particular, one finds oscillations even close to equilib-
rium and does not require (nonlinear) far-from-equilibrium
situations. For each extensive variable ξ1 there is a variable
ξ2 = −(1/LA12g22)ξ̇1 that behaves like a momentum. The
physical nature of the variables can only be determined by
comparison with a specific physical situation. Lowering the
entropy can involve a changes away from uniform spatial dis-
tributions, or it can originate from the alignment of the mo-
tion of the particles. The first case is equivalent to the loading
of a spring, or the charging of a capacitor. The second case
corresponds, e.g., to the collective directed motion of parti-
cles, or to an electrical current. With the present formalism,
one can find analogies to the oscillation in a spring and the
oscillations in an electrical LC element and find analogies to
Newton’s second law. In particular, one finds equivalents of
the inertial mass. For instance, the mass associated to an os-
cillating spring is analogous to the inductance in a solenoid
coil. Since the formalism is identical for each pair of ex-
tensive and intensive variables, we proposed that isentropic
oscillations in chemical reactions can exist in the linear ther-
modynamic limit, and that such oscillations are connected
to chemical inertia involving the existence of a chemical in-
ductance. The thermodynamic forces in the above examples
are ∆(1/T ), ∆(p/T ), −∆(Ψ/T ) and ∆(A/T ). They are
proportional to the extensive variables. Therefore, not only
the extensive variables but also the intensive variables includ-
ing the temperature fluctuate and oscillate. For this reason,
the experimental finding of periodic temperature changes in
chemical oscillations (4, 10–12)) but also the reversible tem-
perature changes in nerve pulses (15, 16, 26) is interesting
and meaningful. It hints at adiabatic contributions to these
oscillations.

We derived equations for the thermodynamic forces which
we called the ‘thermodynamic equations of motion.’ They
are analogous to Hamilton’s equations of motion. This result
may not be surprising because the problems described here
are based on (harmonic) potentials in both formalisms, and
thus the mathematics is analogous. However, they acquire a
different meaning because in contrast to the analytical poten-
tial, V , the entropy, S, is based on statistical considerations.
In the Hamiltonian formalism, energy is constant, while in the
thermodynamic formalism entropy is constant and the inter-
nal energy oscillates between different compartments of the
system and is not constant. It seems plausible that the two
formalisms are not only similar by chance. Liouville’s theo-
rem of statistical mechanics states that along the trajectories
of a mechanical system the density of states in phase space is
constant (27). This is another way of stating that entropy is
conserved, which is just the assumption made here for isen-
tropic processes.

The postulate made in this work is that any spontaneous
thermodynamic process in a harmonic entropy potential is
composed of dissipative parts leading to entropy production
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and entropy conserving processes leading to oscillations. The
thermodynamic formalism can be applied to any pair of vari-
ables, and also to linear combinations of forces. Thus, one ob-
tains the possibility of describing chemical oscillations with a
formalism reminiscent of analytical mechanics. Chemical os-
cillations have been described by sets of nonlinear equations
such as the Brusselator or the Oregonator (7). These schemes
lead to stable limit cycles that are not very dependent on the
initial conditions provided that some forces are kept constant.
In contrast, in the present linear formalism forces are not fixed
and therefore no limit cycles are present. However, depending
on the relative contributions of the LSij and LAij , the formalism
can lead to purely dissipative behavior (real eigenvalues), and
to bifurcations leading to dampened oscillations with a num-
ber of eigenfrequencies that depends on the dimension of the
matrix L. In a future publication we will explore this in more
detail.
0.5cm
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