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Phase-State Dependent Current Fluctuations in Pure Lipid Membranes
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ABSTRACT Current fluctuations in pure lipid membranes have been shown to occur under the influence of transmembrane
electric fields (electroporation) as well as a result from structural rearrangements of the lipid bilayer during phase transition
(soft perforation). We demonstrate that the ion permeability during lipid phase transition exhibits the same qualitative temperature
dependence as the macroscopic heat capacity of a D15PC/DOPC vesicle suspension. Microscopic current fluctuations show
distinct characteristics for each individual phase state. Although current fluctuations in the fluid phase show spikelike behavior
of short timescales (~2 ms) with a narrow amplitude distribution, the current fluctuations during lipid phase transition appear in
distinct steps with timescales of ~20 ms. We propose a theoretical explanation for the origin of timescales and permeability based
on a linear relationship between lipid membrane susceptibilities and relaxation times near the phase transition.
INTRODUCTION

The permeability of cell membranes to ions, proteins, and

other transmitters, and the regulation of these processes, is

of crucial importance in maintaining basic cell functions. In

this context, ion channel proteins have been found to play

a major role in the regulation of ionic transport across the

membrane (1). In addition to the characteristics of the

channel, proteins themselves as an influence of the membrane

phase state on channel function have been identified (2,3),

indicating the importance of the lipid bilayer for transmem-

brane currents. Boheim et al., for example, reported on the

slowing down of protein induced ion channels during the lipid

phase transition (4,5). The first indication of thermodynami-

cally induced changes in permeability was already given by

Papahadjopoulos et al. in 1973 (6), who found a maximum

leakage of radioactive labeled sodium ions during lipid phase

transition.

The application of high electric fields (typically ~107–

108 V/m) presents another mechanism for overcoming the

lipid membrane barrier, inducing current fluctuations in the

absence of channel forming peptides (electroporation) (7–11).

A third mechanism (in addition to ion channels, pores,

and electroporation) to cross the lipid membrane barrier

has been elucidated by Antonov et al. (12). They reported

that quantized ion-conducting channels appear in unmodi-

fied 1,2-distearoyl-sn-glycero-3-phosphocholine membranes

close to the phase transition and demonstrated more recently,

that the conductance of different ions is in accordance with

the well-known Hofmeister series (13). Similarly, Kaufmann

and Silmann (14) as well as the literature (2,15–18) were

able to demonstrate a close relationship between the physical

state of the bilayer and ion current fluctuations. This relation-
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ship is also the subject of an accompanying article by Blicher

et al.(19).

In this article, we study the origin of ion current fluctuations

in protein free lipid bilayers by a thorough comparison of

timescales and amplitudes of ion current fluctuations with

the heat capacity profile of lipid membranes. Although current

fluctuations in the fluid phase appear as short (~2 ms) spikes,

they last for ~20 ms as discrete steplike currents in the phase

transition regime including long-lasting events of ~100 ms.

Based on a model recently proposed by Grabitz et al. (20),

we suggest that the increased timescales at Tm have their

origin in the extended relaxation times generally found during

lipid membrane phase transitions and originating from the flat

thermodynamic potential and consequent weak restoring

forces driving the system back to its equilibrium near Tm.

MATERIALS AND METHODS

Lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Tm ¼ �4�C) and

1,2 dipentadecanoyl-sn-glycero-3-phosphocholine (D15PC, Tm ¼ 33�C)

dissolved in chloroform were purchased from Avanti Polar Lipids (Birming-

ham, AL) and used without further purification. Hexadecane was dissolved

in pentane to achieve a final concentration of 2.5% for the prepainting

solution.

We performed current measurements using a patch-clamp amplifier

(Cornerstone Series) from Dagan (Minneapolis, MN). The temperature

was controlled during the experiments with the aid of a standard heat bath

(Julabo, Seelbach, Germany). Heat capacity profiles of small unilamellar

vesicles were recorded using a VP-DSC calorimeter from Microcal (Avestin,

Ottawa, Canada).

To obtain lipid mixtures, lipids dissolved in chloroform were mixed in the

desired proportion. Aqueous solution of lipids for calorimetric measure-

ments were obtained as described previously (21). The experiments on the

artificial membranes (in this case, black lipid membranes, or BLMs) were

performed by using a setup consisting of two Teflon chambers separated

by a Teflon foil of 25-mm thickness with a 150-mm diameter hole. The

hole was produced by drilling it into the foil. Lipid membranes were

obtained by prepainting the Teflon foil with the hexadecane solution and

15 min of waiting until the pentane was evaporated. Subsequently, both
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chambers were filled up to a level sufficiently far below the hole with a

200-mM NaCl solution. Ten microliters of lipid solution was spread on

the water surface and after a waiting time of 15 min, the electrolyte level

was raised above the hole. Before experiments, the bilayer was characterized

by measuring the resistance and the capacity of the membrane.

RESULTS AND DISCUSSION

Theory

In thermodynamics, the different functions of state (enthalpy,

energy, etc.), the susceptibilities (heat capacity, compressibil-

ities, etc.) and the response times are coupled via the

fluctuation-dissipation theorem (22). For lipid membranes,

it has been shown by Grabitz et al. (20) and Seeger et al.

(23) that the relaxation timescale t after a pressure pertur-

bation is proportional to the excess heat capacity Dcp such that

t ¼ T2

L
Dcp; (1)

where T is the temperature in Kelvin and L is a phenomenolog-

ical coefficient independent of temperature (see Grabitz et al.

(20), and Seeger et al. (23), for details). For 1,2-dimyristoyl-

sn-glycero-3-phosphocholine (DMPC) multilamellar vesicles

(MLV), for instance, L ¼ 6.6 x 108 J K/mol and for DMPC

large unilamellar vesicle (LUV) it is L ¼ 15.7 x 108 J K/mol.

This equation implies that relaxation is slow if the system

is at the heat capacity maximum, which should be very

pronounced in lipid membranes exhibiting a phase transition.

For multilamellar dipalmitoylphosphatidlycholine (DPPC)

vesicles, this time can be as long as 30 s. According to Onsager

(24,25), each fluctuation can be considered as a perturbation

of the system away from the entropy maximum. Therefore,

fluctuation lifetimes and relaxation times are the same.

According to Einstein (26), fluctuations in the thermody-

namic variable xi are related to the curvature of the entropy

potential S by

�
dxidxj

�
¼ �kB

�
v2S

vxivxj

��1

;

or for xi ¼ xj, in the often experimentally more convenient

free energy (G) expression

hdxdxi ¼ �kBT

�
v2G

vx2

��1

;

where kb is the Boltzmann constant and T the temperature.

This can be used to show that heat capacity and fluctua-

tions in enthalpy H are proportional,�
d H2

�
¼
�
H2
�
� hHi2¼ RT2cp;

around the entropy maximum (R is the gas constant). Along

the same lines, one can show that the lateral compressibility

kT is given by �
d A2

�
¼ ARTkT; (2)
i.e., it is proportional to the fluctuations in area A. Heimburg

(27) and Ebel et al. (28) have shown that changes in heat, in

volume, and in area in lipid transitions are proportional func-

tions. This leads to the relation

DkA
T ¼

g2T

A
Dcp; (3)

meaning that the lateral compressibility changes are propor-

tional to the excess heat capacity (g is a material constant

of ~1 m2/J (27)). This further implies that it does not matter

whether one considers a perturbation in enthalpy (after

a temperature jump) or a perturbation in volume or area.

The fluctuations in volume and area have the same lifetimes

as those of the heat.

Pore formation in absence of channel-forming proteins

occurs because of thermal area fluctuations. According to

Nagle and Scott (29), the work to create a pore in the

membrane is proportional to its lateral compressibility,

which is proportional to the excess heat capacity (Eq. 3).

As a consequence, pore formation is facilitated in the melting

regime. Membranes are expected to be more permeable at the

heat capacity maximum (for details, see(19)). Equating the

fluctuation lifetime with the lifetime of pores, this implies

that the pore opening times are proportional to the heat

capacity. This relation has already been discussed in Seeger

et al. (23), and in this article we will demonstrate that this

relation leads to reasonable predictions. Both permeability

and mean pore open time are at maximum in the chain

melting transition. Experimental values for pore lifetimes

are close to those estimated from Eq. 1.

Permeability changes during lipid membrane
phase transition

To study the temperature dependence of lipid bilayers,

a BLM was prepared at 40�C well above the phase transition

of the lipid mixture used (5:95 DOPC/D15PC). Before the

BLM experiments, the heat capacity of the lipid mixture

has been measured (inset of Fig. 1), revealing a melting tran-

sition at Tm z 30�C. To assure bilayer formation, the electric

capacitance of the membrane film has been monitored. The

bilayer was then left to equilibrate for 15 min. After film

formation, the stability of the bilayer was tested by a stepwise

increase of the clamp voltage until significant current fluctu-

ation occurred (i.e., threshold voltage). Subsequently, the

applied voltage VM was decreased until the current fluctua-

tions disappeared, leaving the system close to the conducting

state. After 10 min waiting for equilibration, the temperature

was lowered at a rate of 0.2�C/min at constant clamp voltage.

Fig. 1 shows the overall transmembrane conductivity (aver-

aged over 60 s) at VM ¼ 400 mV as a function of tempera-

ture. At T ¼ 36�C the transmembrane conductivity begins

to rapidly rise to reach a maximum at T z 31.5�C. Clearly,

ion permeability and heat capacity follow the same qualita-

tive temperature dependence with a full-width at half height
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of 3–6 K. The slight shift of Itot (T) toward higher tempera-

tures is probably due to the different sample preparations.

After sonification, small unilamellar vesicles are believed

to be under some tension, whereas BLMs are rather relaxed.

Tension, however, tends to increase the membrane area,

thereby supporting a lowering in Tm. Finally, uncontrollable

lipid accumulation around the septum might be an additional

source of changes in Tm. We were able to observe the same

correlation between heat capacity and ion permeability for

D15PC/DMPC mixtures (see Supporting Material). How-

ever, the introduction of DOPC in our lipid mixtures signif-

icantly increased the stability of the planar lipid membrane.

This can also be seen in Fig. 2 b, where the bilayer resists

membrane potentials as high as 1000 mV.

One possible origin of the increase in overall permeability

is the increasing number of lattice defects at the gel/fluid

phase boundary. This was suggested by several theoretical

findings (30) and is supported by the work of Papahadjopou-

los et al. (6), who found a maximum leakage of radioactive

labeled sodium ions during lipid phase transition. An alterna-

tive approach to explain the increased permeability in the

phase transition region was given by Kaufmann et al. (31)

as well as by Nagel and Scott (29) and Blicher et al. (19),

who address the changes in lateral compressibility kT and

their relation to the fluctuations in area hvA2i (Eq. 2).

Considering such area fluctuations as a source of defects

excellently agrees with the correlation between heat capacity

and conductivity.

Current characteristics strongly depend
on lipid phase state

To unravel the origin of the transient conductivity behavior,

we prepared BLMs from a DOPC/D15PC (5:95) mixture

FIGURE 1 Relative conductance of a D15PC/DOPC (95:5) mixture as

a function of temperature at VM ¼ 400 mV. A maximum is observed

between 35�C and 25�C. The current trace clearly correlates with the heat

capacity profile (see inset). The maximum corresponds to a conductivity

of 2 x 10�7 S/cm2. Conductivity measurements outside the transition region

in the fluid (squares) and gel phase (triangles) have been performed on

individual BLMs and are further described in the Supporting Material.
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both in the fluid phase (40�C) and in the phase transition

region (27�C). After a stepwise increase in VM until values

were reached at which current fluctuations were observed,

the voltage VM was again slightly reduced, resulting in stable

current fluctuations over several minutes.

In the fluid phase (Fig. 2 a, T ¼ 33�C, VM ¼ 100 mV),

spikelike events were observed and did not change their char-

acteristics at even higher temperatures. The current fluctua-

tions in the phase transition regime (Fig. 2 b, T ¼ 31,5�C,

VM ¼ 1000 mV), however, appear rather steplike and quan-

tized, with longer opening times. Again, the bilayer exhibited

very high stability (the relation between applied voltage and

initial resistance will be addressed in a separate article). For

the DMPC/D15PC mixture, for example, strong current fluc-

tuations were found at ~500 mV and below (see Supporting

Material). An analysis of the current amplitudes results in

a rather broad distribution with two small maxima at ~12 pS

and 24 pS in the fluid state (Fig. 3 a). In the phase transition

FIGURE 2 Typical current traces of a D15PC/DOPC (95:5) (top panel) in

the fluid phase (33�C, VM¼ 100 ~ mV) and (bottom panel) in the phase tran-

sition regime (31.5�C, VM ¼ 1000 mV). In the fluid phase, spikelike current

fluctuations on short timescales are observed. In the phase transition regime,

however, quantized fluctuations appear at longer timescales. Note that the

typical timescales are strongly increased as compared with the top panel.
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regime, these maxima become very pronounced (Fig. 3 b). In

addition, the gel state exhibited some current fluctuations,

which, however either slowly disappeared when waiting for

extended times or led to membrane rupture (see Supporting

Material). Distinct quantized current fluctuations in lipid

membranes have been reported before (2,12–18,29), ranging

between ~1 pA and ~1 nA close to the phase transition temper-

ature. However, so far, no clear relation among current ampli-

tudes, distribution, and fluctuations for the different thermo-

dynamic states of the lipid membrane has been given.

The existence of current fluctuations in both states

suggests that the nature of the underlying mechanism for

these current fluctuations is the same, but the specific charac-

teristics seem to be determined by the physical properties of

the membrane. In agreement with our results, we believe,

that fluctuations in area hvA2i are the origin of lattice defect

FIGURE 3 Conductivity histogram of current fluctuations in (top panel)

the fluid phase (T¼ 33�C, VM¼ 100 mV) and (bottom panel) the phase tran-

sition regime (T¼31.5�C, VM¼1000 mV). The peak at G¼0 pS corresponds

to the baseline. In the fluid phase, no significant peaks appear. In the phase

transition regime, distinct maxima around G¼ 12 pS and G¼ 24 pS appear,

with some additional substructure around G¼ 20 and G¼ 27 pS. Data were

collected from three individual bilayers by analyzing a 200 s long trace. The

observed maxima agree in all measurements within a range of 20%.
formation and hence permeating ions. The origin of the step-

like shape of the current fluctuations remains unclear, yet is

probably related to the physical properties of the liquid

crystal. In principle, and based on our experimental results,

one could model the pore size necessary for an ion to pass

the membrane. For a one-step fluctuation (Fig. 2 b), this

suggests a single pore diameter of ~1 nm, using a cylindrical

pore approximation assuming free instead of surface-bound

water within the pore.

Timescales of current fluctuation increase
during phase transition

To unravel the relationship between thermodynamic

behavior and the observed fluctuations, we analyzed the

typical timescales of the opening times. Peaks were identi-

fied and characterized with a threshold criterion on the

same set of data used to describe the conductance character-

istics above (Fig. 3). In Fig. 4, we show the resulting data for

the fluid phase (circles) and the phase transition (triangles).

The logarithmic plot already reveals that the opening times

are significantly increased within the phase transition regime.

In the fluid phase, we found a mean average opening time of

~3 ms (exponential fit). The behavior alters significantly

when the phase transition region is entered. The mean

average timescales shift by almost an order of magnitude

to ~20 ms, including long-lasting states of up to ~100 ms.

We also observed a broad variety of events including short

events in the transition region and long fluctuations in the

fluid state during measurements over extended periods of

times. This is also reproduced by the broad distributions

FIGURE 4 Logarithmic plot of the timescales of the current fluctuation in

the fluid phase (triangles) and the phase transition regime (circles). The

transmembrane currents have been measured under constant membrane

potential Vm. The timescales of the fluid phase follow an exponential decay,

whereas those in the transition can only be approximated by a double-

exponential decay. The average lifetimes t center around t ¼ 3 ms in the

fluid and t ¼ 20 ms in the phase transition. This is in good agreement

with our theoretical prediction.
Biophysical Journal 96(11) 4592–4597
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shown in Fig. 3, and reflects uncontrollable variations in the

lipid membrane structure and dynamics like, for example,

the pool of lipids accumulating around the septum or the

degree of asymmetry. However, the tendency toward

increased timescales during lipid phase transitions is obvious

and reproducible in every experiment. Importantly, these

enhanced timescales are in line with the increasing relaxation

times of the membrane in this regime (20) and originate most

likely from the small restoring forces of the flat thermody-

namic potential around Tm. Experimentally, increased relax-

ation times during the main phase transition of artificial

membranes have been reported before by Tsong (32) as

well as by Blume and Hillmann (33). Since the relaxation

times reflect the reorganization of lipids in the membrane,

one would expect that pore nucleation, pore opening, and

closing, respectively, follow the same time evolution as lipid

relaxation.

Taking the phenomenological coefficient L for DMPC

MLV (as given above) and numbers for cp from Fig. 1

(at ~31�C), Eq. 1 yields lifetimes of 165 ms, whereas using

the L from DMPC LUV yields lifetimes of 73 ms. Considering

the transition half-width of only 2�C, this is very close to the

experimentally found average lifetime of 20 ms (Fig. 4).

CONCLUSION

The behavior of current fluctuations in an unmodified phos-

pholipid membrane under a constant voltage was found to be

strongly sensitive to the phase state. Whereas fluctuations in

the fluid phase reveal an unordered pattern on short time-

scales, in the phase-transition region, quantized fluctuations

on much longer timescales occur. Using the fluctuation dissi-

pation theorem and the linear relationship between heat

capacity and area compressibility, we were able to predict

the correct timescales and identify weak restoring forces of

the flat thermodynamic potential as the origin of the extended

timescales during lipid phase transition. Therefore, this

article demonstrates the thermodynamic potential of lipid

membranes to be the physical origin of lipid membrane

current fluctuations.
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